# Cayley-Hamilton theorem and Nakayama’s lemma

Originally published at 狗和留美者不得入内. You can comment here or there.

The Cayley-Hamilton theorem states that every square matrix over a commutative ring $A$ satisfies its own characteristic equation. That is, with $I_n$ the $n \times n$ identity matrix, the characteristic polynomial of $A$ $p(\lambda) = \det (\lambda I_n - A)$

is such that $p(A) = 0$. I recalled that in a post a while ago, I mentioned that for any matrix $A$, $A(\mathrm{adj}(A)) = (\det A) I_n$, a fact that is not hard to visualize based on calculation of determinants via minors, which is in fact much of what brings the existence of this adjugate to reason in some sense. This can be used to prove the Cayley-Hamilton theorem.

So we have $(\lambda I_n - A)\mathrm{adj}(\lambda I_n - A) = p(\lambda)I_n$,

where $p$ is the characteristic polynomial of $A$. The adjugate in the above is a matrix of polynomials in $t$ with coefficients that are matrices which are polynomials in $A$, which we can represent in the form $\displaystyle\sum_{i=0}^{n-1}t^i B_i$.

We have \displaystyle {\begin{aligned}p(\lambda)I_{n} &= (\lambda I_n - A)\displaystyle\sum_{i=0}^{n-1}\lambda^i B_i \\ &= \displaystyle\sum_{i=0}^{n-1}\lambda^{i+1}B_{i}-\sum _{i=0}^{n-1}\lambda^{i}AB_{i} \\ &= \lambda^{n}B_{n-1}+\sum _{i=1}^{n-1}\lambda^{i}(B_{i-1}-AB_{i})-AB_{0}.\end{aligned}}

Equating coefficients gives us $B_{n-1} = I_n, \qquad B_{i-1} - AB_i = c_i I_n, 1 \leq i \leq n-1, \qquad -AB_0 = c_0I_0$.

With this, we have $A^n + c_{n-1}A^{n-1} + \cdots + c_1A + c_0I_n = A^nB_{n-1} + \displaystyle\sum_{i=1}^{n-1} (A^iB_{i-1} - A^{i+1}B_i) - AB_0 = 0$,

with the RHS telescoping and annihilating itself to $0$.

There is generalized version of this for a module over a ring, which goes as follows.

Cayley-Hamilton theorem (for modules) Let $A$ be a commutative ring with unity, $M$ a finitely generated $A$-module, $I$ an ideal of $A$, $\phi$ an endomorphism of $M$ with $\phi M \subset IM$.

Proof: It’s mostly the same. Let $\{m_i\} \subset M$ be a generating set. Then for every $i$, $\phi(m_i) \in IM$, with $\phi(m_i) = \displaystyle\sum_{j=1}^n a_{ij}m_j$, with the $a_{ij}$s in $I$. This means by closure properties of ideals the polynomial coefficients in the above will stay in $I$.     ▢

From this follows easily a statement of Nakayama’s lemma, ubiquitous in commutative algebra.

Nakayama’s lemma  Let $I$ be an ideal in $R$, and $M$ a finitely-generated module over $R$. If $IM = M$, then there exists an $r \in R$ with $r \equiv 1 \pmod{I}$, such that $rM = 0$.

Proof: With reference to the Cayley-Hamilton theorem, take $\phi = I_M$, the identity map on $M$, and define the polynomial $p$ as above. Then $rI_M = p(I_M) = (1 + c_{n-1} + c_{n-2} + \cdots + c_0)I_M = 0$

both annihilates the $c_i$s, coefficients residing in $I$, so that $r \equiv 1 \pmod{I}$ and gives the zero map on $M$ in order for $rM = 0$.     ▢

• #### 看了高考的考试模式和内容，真的觉得清北跟一般的985在学生水平上没啥区别，竞赛保送生之外

昨天还看了一下高考卷子，比如 北京理科高考综合。什么引起我这么做的？是在知乎上看到 Zeldovich Yakov 说高考命题不科学。…

• #### 去美国吸引什么样的人？

昨天晚，我跟一位从未去过美国的俄罗斯程序员说他绝对比谷歌的大多数程序员聪明。他的回应却是，“我觉得不太可能”。然后我不得不跟他说，“你有点太高估美国了”。如果我说谷歌都有清华大学毕业的高级工程师觉得特征值(eigenvalue)是特别专的名词，人可以反驳说那跟软件开发没啥关系。可是即使在软件开发，…

• #### 为什么我现在不再痴迷于“智商”这个东西了

Originally published at Когда нас в бой пошлёт товарищ Путин и маршал Шойгу в бой нас поведёт!. You can comment here or there.…

• Post a new comment

#### Error

Anonymous comments are disabled in this journal

default userpic

Your reply will be screened

• 0 comments