# Automorphisms of quaternion group

Originally published at 狗和留美者不得入内. You can comment here or there.

I learned this morning from Brian Bi that the automorphism group of the quaternion group is in fact $S_4$. Why? The quaternion group is generated by any two of $i,j,k$ all of which have order $4$. $\pm i, \pm j, \pm k$ correspond to the six faces of a cube. Remember that the symmetries orientation preserving of cube form $S_4$ with the objects permuted the space diagonals. Now what do the space diagonals correspond to? Triplet bases $(i,j,k), (-i,j,-k), (j,i,-k), (-j,i,k)$, which correspond to four different corners of the cube, no two of which are joined by a space diagonal. We send both our generators $i,j$ to two of $\pm i, \pm j, \pm k$; there are $6\cdot 4 = 24$ choices. There are by the same logic $24$ triplets $(x,y,z)$ of quaternions such that $xy = z$. We define an equivalence relation with $(x,y,z) \sim (-x,-y,z)$ and $(x,y,z) \sim (y,z,x) \sim (z,x,y)$ that is such that if two elements are in the same equivalence class, then results of the application of any automorphism on those two elements will be as well. Furthermore, no two classes are mapped to the same class. Combined, this shows that every automorphism is a bijection on the equivalence classes.

Tags:
• #### Why the 1700 Japanese could have discovered calculus and modern science by 2200 or 2700

Originally published at 狗和留美者不得入内. You can comment here or there. Some thoughts on Greek, Persian, Arab, Indian, and Chinese science In the…

• #### 知乎被留美王八蛋把控了，连我的内容为数学推导的评论都得删

没错，我不小心用了“傻逼”这个词，可是内容基本完全是数学。因为违规，又被禁了一天

• #### Selberg on Ramanujan

昨晚，我想起了大挪威数学家 Atle Selberg。他是个很有趣的人，好像在 1943 年挪威被纳粹德国占领时获得了奥斯陆大学的博士。好像他还参军了，也坐牢了。对于他的工作我知道他和 Erdos…

• Post a new comment

#### Error

Anonymous comments are disabled in this journal

default userpic