Sheng Li (gmachine1729) wrote,
Sheng Li
gmachine1729

How to naturally construct and compute explicitly the Hodge dual of a differential form

Originally published at 狗和留美者不得入内. You can comment here or there.

There is antisymmetry in the wedge product of differential forms, i.e. [公式] . Take the decomposable [公式] -form in [公式] -dimensional space denoted by

[公式] We can take [公式] and the corresponding [公式] -form

[公式] as the Hodge dual with signs yet to be determined. As for how to reasonably prescribe the sign, we first note that a [公式] -form wedged producted with its Hodge dual gives

[公式] The right hand side of this is equal to

[公式] We let [公式] be the standard ordering of the basis of the underlying vector space, which we regard as positively oriented. Moreover, we let [公式] be the permutation such that

[公式] It is reasonable to impose for symmetry that

[公式] To satisfy this, we choose an ordering of remaining indices [公式] such that the sign of the corresponding permutation [公式] is positive.

[公式] , the space of [公式] -forms over finite vector space [公式], has dimension [公式] . The standard basis for it we represent as

[公式]

[公式] has the same dimension [公式] . It is easy to see that the Hodge star operator maps the standard basis of [公式] to that of [公式] , and moreover that

[公式] Imposing linearity on the Hodge star operator then gives us

[公式] Now we wish to in Einstein notation in terms of [公式] indices represent the Hodge star of an arbitrary [公式] -form. In doing so, we will use the complete antisymmetric tensor of rank [公式] , which in addition to being zero when not all indices are different, satisfies

[公式] In the basis above, we assumed [公式] , and the coefficients [公式] . If we impose no restriction on the ordering of the indices and for each combination pick its associated basis element arbitrarily, then for the sum of our linear combination of the basis elements to remain invariant [公式]must be a completely antisymmetric tensor. That is, when we swap adjacent elements in our wedge product which flips signs, we must flip the sign of the coefficient as well. Given this, we can also simply sum through all permutations of [公式] , the set of first [公式] integers, in which case the set [公式] is mapped to fixed combination [公式] in [公式] of the [公式] permutations. Thus, we have for any arbitrary [公式] -form, implicitly summing across all [公式] ,

[公式] Essentially, for each combination or basis element, we count it [公式] times, which we also divide by in the result to normalize. In calculating its Hodge dual, we note how

[公式] In replacing the parenthesis with a subscript for [公式], it is to emphasize that [公式] are different indices each of which are iterated across [公式] per Einstein notation. Complete antisymmetry means that a duplication of index results in [公式] . From [公式] , we get

[公式]

Some function isomorphisms between exterior product spaces

The Hodge star is a function of signature

[公式] that is clearly also a linear isomorphism, which means that

[公式] We also showed via the above calculation that wedge product is a bilinear function of signature

[公式]

We denote the volume corresponding to the wedge product of our [公式] basis vectors of real vector space [公式] in an order of positive orientation, [公式] , as [公式] and observe that every elements of [公式] is of the form [公式] , [公式] , or

[公式] Moreover, [公式] tells us that plugging in a [公式] -form on the left results in a function of signature

[公式] which is a functional over the [公式] -forms, which we denote with [公式] , and no different different [公式] -form inputs result in the same functional, which means we have induced an injective function of signature

[公式] We now prove that it is also surjective. Every element in [公式] is, by definition of the vector space underlying the functional, uniquely defined by a collection of [公式] mappings of combinations to real numbers, or in other words, each[公式] in our basis is assigned to a real number [公式] . This corresponds uniquely to [公式] in our wedge product.

Bijectivity means

[公式]

Inducing an inner product on [公式] via the Hodge star

We now examine the function described by

[公式]We now verify that it satisfies the properties of an inner product. Below, we per [公式] set

[公式]

and given this, by [公式] ,

[公式] We will for simplicity also omit the constant factor in subsequent calculations.

  1. Linearity in the first argument is satisfied because the wedge product is bilinear.
  2. The calculation below gives conjugate symmetry.

[公式] 3. If in [公式] , we set [公式] in order to equate [公式] , we find that

[Error: Irreparable invalid markup ('<img [...] https://www.zhihu.com/equation?tex>') in entry. Owner must fix manually. Raw contents below.]

<p><small>Originally published at <a href="https://gmachine1729.wpcomstaging.com/2021/04/04/how-to-naturally-construct-and-compute-explicitly-the-hodge-dual-of-a-differential-form/">狗和留美者不得入内</a>. You can comment here or <a href="https://gmachine1729.wpcomstaging.com/2021/04/04/how-to-naturally-construct-and-compute-explicitly-the-hodge-dual-of-a-differential-form/#comments">there</a>.</small></p><div class="RichText ztext Post-RichText"> <p>There is antisymmetry in the wedge product of differential forms, i.e. <img src="https://www.zhihu.com/equation?tex=dx%5E%5Cmu+%5Cwedge+dx%5E%5Cnu+%3D+-+dx%5E%5Cnu+%5Cwedge+dx%5E%5Cmu+" alt="[公式]" eeimg="1" data-formula="dx^\mu \wedge dx^\nu = - dx^\nu \wedge dx^\mu "> . Take the decomposable <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> -form in <img src="https://www.zhihu.com/equation?tex=n" alt="[公式]" eeimg="1" data-formula="n"> -dimensional space denoted by</p> <p><img src="https://www.zhihu.com/equation?tex=dx%5E%7B%5Cmu_1%7D%5Cwedge+dx%5E%7B%5Cmu_2%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D.%5C%5C" alt="[公式]" eeimg="1" data-formula="dx^{\mu_1}\wedge dx^{\mu_2}\wedge \ldots \wedge dx^{\mu_p}.\\"> We can take <img src="https://www.zhihu.com/equation?tex=%5C%7B%5Cnu_1%2C%5Cnu_2%2C%5Cldots%2C%5Cnu_%7Bn-p%7D%5C%7D+%3D+%5C%7B1%2C2%2C%5Cldots%2Cn%5C%7D+%5Csetminus+%5C%7B%5Cmu_1%2C%5Cmu_2%2C%5Cldots%2C%5Cmu_p%5C%7D" alt="[公式]" eeimg="1" data-formula="\{\nu_1,\nu_2,\ldots,\nu_{n-p}\} = \{1,2,\ldots,n\} \setminus \{\mu_1,\mu_2,\ldots,\mu_p\}"> and the corresponding <img src="https://www.zhihu.com/equation?tex=%28n-p%29" alt="[公式]" eeimg="1" data-formula="(n-p)"> -form</p> <p><img src="https://www.zhihu.com/equation?tex=%28dx%5E%7B%5Cmu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D%29%5E%2A+%3D+%5Cpm+dx%5E%7B%5Cnu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cnu_%7Bn-p%7D%7D.%5C%5C" alt="[公式]" eeimg="1" data-formula="(dx^{\mu_1}\wedge \ldots \wedge dx^{\mu_p})^* = \pm dx^{\nu_1}\wedge \ldots \wedge dx^{\nu_{n-p}}.\\"> as the Hodge dual with signs yet to be determined. As for how to reasonably prescribe the sign, we first note that a <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> -form wedged producted with its Hodge dual gives</p> <p><img src="https://www.zhihu.com/equation?tex=%28dx%5E%7B%5Cmu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D%29%5Cwedge+%28dx%5E%7B%5Cmu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D%29%5E%2A+%3D+%5Cpm+dx%5E%7B%5Cmu_1%7D%5Cwedge+dx%5E%7B%5Cmu_p%7D+%5Cwedge+dx%5E%7B%5Cnu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cnu_%7Bn-p%7D%7D.+%5Cqquad+%281%29%5C%5C" alt="[公式]" eeimg="1" data-formula="(dx^{\mu_1}\wedge \ldots \wedge dx^{\mu_p})\wedge (dx^{\mu_1}\wedge \ldots \wedge dx^{\mu_p})^* = \pm dx^{\mu_1}\wedge dx^{\mu_p} \wedge dx^{\nu_1}\wedge \ldots \wedge dx^{\nu_{n-p}}. \qquad (1)\\"> The right hand side of this is equal to</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cpm+dx%5E%7B1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7Bn%7D.%5C%5C" alt="[公式]" eeimg="1" data-formula="\pm dx^{1}\wedge \ldots \wedge dx^{n}.\\"> We let <img src="https://www.zhihu.com/equation?tex=dx%5E1%2Cdx%5E2%2C%5Cldots+dx%5En" alt="[公式]" eeimg="1" data-formula="dx^1,dx^2,\ldots dx^n"> be the standard ordering of the basis of the underlying vector space, which we regard as positively oriented. Moreover, we let <img src="https://www.zhihu.com/equation?tex=%5Csigma" alt="[公式]" eeimg="1" data-formula="\sigma"> be the permutation such that</p> <p><img src="https://www.zhihu.com/equation?tex=%5Csigma%281%2C2%2C%5Cldots%2C+n%29+%3D+%28%5Csigma%281%29%2C%5Csigma%282%29%2C%5Cldots%2C+%5Csigma%28n%29%29+%3D+%28%5Cmu_1%2C%5Cmu_2%2C%5Cldots%2C+%5Cmu_p%2C%5Cnu_1%2C%5Cldots%2C+%5Cnu_%7Bn-p%7D%29.%5C%5C" alt="[公式]" eeimg="1" data-formula="\sigma(1,2,\ldots, n) = (\sigma(1),\sigma(2),\ldots, \sigma(n)) = (\mu_1,\mu_2,\ldots, \mu_p,\nu_1,\ldots, \nu_{n-p}).\\"> It is reasonable to impose for symmetry that</p> <p><img src="https://www.zhihu.com/equation?tex=%28dx%5E%7B%5Cmu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D%29%5Cwedge+%28dx%5E%7B%5Cmu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_%7Bp%7D%7D%29%5E%2A+%3D+dx%5E1%5Cwedge+%5Cldots+%5Cwedge+dx%5En.%5C%5C" alt="[公式]" eeimg="1" data-formula="(dx^{\mu_1}\wedge \ldots \wedge dx^{\mu_p})\wedge (dx^{\mu_1}\wedge \ldots \wedge dx^{\mu_{p}})^* = dx^1\wedge \ldots \wedge dx^n.\\"> To satisfy this, we choose an ordering of remaining indices <img src="https://www.zhihu.com/equation?tex=%28%5Cnu_1%2C%5Cldots%2C+%5Cnu_%7Bn-p%7D%29" alt="[公式]" eeimg="1" data-formula="(\nu_1,\ldots, \nu_{n-p})"> such that the sign of the corresponding permutation <img src="https://www.zhihu.com/equation?tex=%5Csigma" alt="[公式]" eeimg="1" data-formula="\sigma"> is positive.</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5Ep%28V%29" alt="[公式]" eeimg="1" data-formula="\bigwedge^p(V)"> , the space of <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> -forms over finite vector space <img src="https://www.zhihu.com/equation?tex=V" alt="[公式]" eeimg="1" data-formula="V">, has dimension <img src="https://www.zhihu.com/equation?tex=%5Cbinom%7Bn%7D%7Bp%7D" alt="[公式]" eeimg="1" data-formula="\binom{n}{p}"> . The standard basis for it we represent as</p> <p><img src="https://www.zhihu.com/equation?tex=%28e%5E1%2C+%5Cldots%2C+e%5E%7B%5Cbinom%7Bn%7D%7Bp%7D%7D%29+%3D+%5C%7Bdx%5E%7B%5Cmu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D+%3A+1+%5Cleq+%5Cmu_1+%3C+%5Cmu_2+%3C+%5Cldots+%3C+%5Cmu_p+%5Cleq+n%5C%7D.%5C%5C" alt="[公式]" eeimg="1" data-formula="(e^1, \ldots, e^{\binom{n}{p}}) = \{dx^{\mu_1}\wedge \ldots \wedge dx^{\mu_p} : 1 \leq \mu_1 < \mu_2 < \ldots < \mu_p \leq n\}.\\"> </p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5E%7Bn-p%7D%28V%29" alt="[公式]" eeimg="1" data-formula="\bigwedge^{n-p}(V)"> has the same dimension <img src="https://www.zhihu.com/equation?tex=%5Cbinom%7Bn%7D%7Bn-p%7D+%3D+%5Cbinom%7Bn%7D%7Bp%7D" alt="[公式]" eeimg="1" data-formula="\binom{n}{n-p} = \binom{n}{p}"> . It is easy to see that the Hodge star operator maps the standard basis of <img src="https://www.zhihu.com/equation?tex=%5CLambda%5Ep%28V%29" alt="[公式]" eeimg="1" data-formula="\Lambda^p(V)"> to that of <img src="https://www.zhihu.com/equation?tex=%5CLambda%5E%7Bn-p%7D%28V%29" alt="[公式]" eeimg="1" data-formula="\Lambda^{n-p}(V)"> , and moreover that</p> <p><img src="https://www.zhihu.com/equation?tex=e%5Ei+%5Cwedge+%28e%5Ej%29%5E%2A+%3D+%5Cdelta_i%5Ej+dx%5E1%5Cwedge+dx%5E2%5Cwedge+%5Cldots+%5Cwedge+dx%5En.%5C%5C" alt="[公式]" eeimg="1" data-formula="e^i \wedge (e^j)^* = \delta_i^j dx^1\wedge dx^2\wedge \ldots \wedge dx^n.\\"> Imposing linearity on the Hodge star operator then gives us</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbegin%7Beqnarray%7D+%28A_ie%5Ei%29%5Cwedge+%5B%28B_j+e%5Ej%29%5E%2A%5D+%26%3D%26+%28A_ie%5Ei%29%5Cwedge+%5BB_j+%28e%5Ej%29%5E%2A%5D%5C%5C+%26%3D%26+%28A_ie%5Ei%29%5Cwedge+%5BB_i+%28e%5Ei%29%5E%2A%5D%5C%5C+%26%3D%26+A_iB_i+dx_1+%5Cwedge+dx_2+%5Cldots+%5Cwedge+dx_n.+%5Cqquad+%282%29+%5Cend%7Beqnarray%7D%5C%5C" alt="[公式]" eeimg="1" data-formula="\begin{eqnarray} (A_ie^i)\wedge [(B_j e^j)^*] &amp;=&amp; (A_ie^i)\wedge [B_j (e^j)^*]\\ &amp;=&amp; (A_ie^i)\wedge [B_i (e^i)^*]\\ &amp;=&amp; A_iB_i dx_1 \wedge dx_2 \ldots \wedge dx_n. \qquad (2) \end{eqnarray}\\"> Now we wish to in Einstein notation in terms of <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> indices represent the Hodge star of an arbitrary <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> -form. In doing so, we will use the complete antisymmetric tensor of rank <img src="https://www.zhihu.com/equation?tex=n" alt="[公式]" eeimg="1" data-formula="n"> , which in addition to being zero when not all indices are different, satisfies</p> <p><img src="https://www.zhihu.com/equation?tex=e%5E%7B%5Csigma%281%29%5Csigma%282%29%5Cldots+%5Csigma%28n%29%7D+%3D+%5Cmathrm%7Bsgn%7D%28%5Csigma%29e%5E%7B12%5Cldots+n%7D+%3D+%5Cmathrm%7Bsgn%7D%28%5Csigma%29.%5C%5C" alt="[公式]" eeimg="1" data-formula="e^{\sigma(1)\sigma(2)\ldots \sigma(n)} = \mathrm{sgn}(\sigma)e^{12\ldots n} = \mathrm{sgn}(\sigma).\\"> In the basis above, we assumed <img src="https://www.zhihu.com/equation?tex=%5Cmu_1+%3C+%5Cldots+%3C+%5Cmu_n+" alt="[公式]" eeimg="1" data-formula="\mu_1 < \ldots < \mu_n "> , and the coefficients <img src="https://www.zhihu.com/equation?tex=A_i+%5Cequiv+A_%7B%5Cmu_1%5Cldots+%5Cmu_p%7D" alt="[公式]" eeimg="1" data-formula="A_i \equiv A_{\mu_1\ldots \mu_p}"> . If we impose no restriction on the ordering of the indices and for each combination pick its associated basis element arbitrarily, then for the sum of our linear combination of the basis elements to remain invariant <img src="https://www.zhihu.com/equation?tex=A_%7B%5Cmu_1%5Cldots+%5Cmu_p%7D" alt="[公式]" eeimg="1" data-formula="A_{\mu_1\ldots \mu_p}">must be a completely antisymmetric tensor. That is, when we swap adjacent elements in our wedge product which flips signs, we must flip the sign of the coefficient as well. Given this, we can also simply sum through all permutations of <img src="https://www.zhihu.com/equation?tex=%5Bn%5D" alt="[公式]" eeimg="1" data-formula="[n]"> , the set of first <img src="https://www.zhihu.com/equation?tex=n" alt="[公式]" eeimg="1" data-formula="n"> integers, in which case the set <img src="https://www.zhihu.com/equation?tex=%5C%7B1%2C+%5Cldots%2C+p%5C%7D" alt="[公式]" eeimg="1" data-formula="\{1, \ldots, p\}"> is mapped to fixed combination <img src="https://www.zhihu.com/equation?tex=%5C%7B%5Cmu_1%2C%5Cldots%2C+%5Cmu_p%5C%7D" alt="[公式]" eeimg="1" data-formula="\{\mu_1,\ldots, \mu_p\}"> in <img src="https://www.zhihu.com/equation?tex=p%21%28n-p%29%21" alt="[公式]" eeimg="1" data-formula="p!(n-p)!"> of the <img src="https://www.zhihu.com/equation?tex=n%21" alt="[公式]" eeimg="1" data-formula="n!"> permutations. Thus, we have for any arbitrary <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> -form, implicitly summing across all <img src="https://www.zhihu.com/equation?tex=%5Csigma+%5Cin+S_n" alt="[公式]" eeimg="1" data-formula="\sigma \in S_n"> ,</p> <p><img src="https://www.zhihu.com/equation?tex=%5Comega+%5Cequiv+%5Cfrac%7B1%7D%7Bp%21%28n-p%29%21%7DA_%7B%5Csigma%281%29%5Cldots+%5Csigma%28p%29%7Ddx%5E%7B%5Csigma%281%29%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma%28p%29%7D.+%5Cqquad+%283%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\omega \equiv \frac{1}{p!(n-p)!}A_{\sigma(1)\ldots \sigma(p)}dx^{\sigma(1)}\wedge \ldots \wedge dx^{\sigma(p)}. \qquad (3)\\"> Essentially, for each combination or basis element, we count it <img src="https://www.zhihu.com/equation?tex=p%21%28n-p%29%21" alt="[公式]" eeimg="1" data-formula="p!(n-p)!"> times, which we also divide by in the result to normalize. In calculating its Hodge dual, we note how</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbegin%7Beqnarray%7D+%28dx%5E%7B%5Csigma%281%29%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma%28p%29%7D%29%5E%2A+%26%3D%26+%5Cmathrm%7Bsgn%7D%28%5Csigma%29+dx%5E%7B%5Csigma%28p%2B1%29%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma%28n%29%7D%5C%5C+%26%3D%26+e%5E%7B%5Csigma_1%5Csigma_2%5Cldots+%5Csigma_n%7Ddx%5E%7B%5Csigma_%7Bp%2B1%7D%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_n%7D.+%5Cqquad+%284%29+%5Cend%7Beqnarray%7D%5C%5C" alt="[公式]" eeimg="1" data-formula="\begin{eqnarray} (dx^{\sigma(1)}\wedge \ldots \wedge dx^{\sigma(p)})^* &amp;=&amp; \mathrm{sgn}(\sigma) dx^{\sigma(p+1)}\wedge \ldots \wedge dx^{\sigma(n)}\\ &amp;=&amp; e^{\sigma_1\sigma_2\ldots \sigma_n}dx^{\sigma_{p+1}}\wedge \ldots \wedge dx^{\sigma_n}. \qquad (4) \end{eqnarray}\\"> In replacing the parenthesis with a subscript for <img src="https://www.zhihu.com/equation?tex=%5Csigma" alt="[公式]" eeimg="1" data-formula="\sigma">, it is to emphasize that <img src="https://www.zhihu.com/equation?tex=%5Csigma_1%2C%5Csigma_2%2C%5Cldots+%5Csigma_n" alt="[公式]" eeimg="1" data-formula="\sigma_1,\sigma_2,\ldots \sigma_n"> are different indices each of which are iterated across <img src="https://www.zhihu.com/equation?tex=%5B1%5D" alt="[公式]" eeimg="1" data-formula="[1]"> per Einstein notation. Complete antisymmetry means that a duplication of index results in <img src="https://www.zhihu.com/equation?tex=e_%7B%5Csigma_1%5Csigma_2%5Cldots+%5Csigma_n%7D+%3D+0" alt="[公式]" eeimg="1" data-formula="e_{\sigma_1\sigma_2\ldots \sigma_n} = 0"> . From <img src="https://www.zhihu.com/equation?tex=%284%29" alt="[公式]" eeimg="1" data-formula="(4)"> , we get</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbegin%7Beqnarray%7D+%5Comega%5E%2A+%26%3D%26+%5Cfrac%7B1%7D%7Bp%21%28n-p%29%21%7DA_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D%28dx%5E%7B%5Csigma_%7B1%7D%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_p%7D%29%5E%2A%5C%5C+%26%3D%26+%5Cfrac%7B1%7D%7Bp%21%28n-p%29%21%7DA_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D+e%5E%7B%5Csigma_1%5Csigma_2%5Cldots+%5Csigma_n%7Ddx%5E%7B%5Csigma_%7Bp%2B1%7D%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_n%7D.+%5Cqquad+%285%29+%5Cend%7Beqnarray%7D+%5C%5C" alt="[公式]" eeimg="1" data-formula="\begin{eqnarray} \omega^* &amp;=&amp; \frac{1}{p!(n-p)!}A_{\sigma_1\ldots \sigma_p}(dx^{\sigma_{1}}\wedge \ldots \wedge dx^{\sigma_p})^*\\ &amp;=&amp; \frac{1}{p!(n-p)!}A_{\sigma_1\ldots \sigma_p} e^{\sigma_1\sigma_2\ldots \sigma_n}dx^{\sigma_{p+1}}\wedge \ldots \wedge dx^{\sigma_n}. \qquad (5) \end{eqnarray} \\"> </p> <h3>Some function isomorphisms between exterior product spaces</h3> <p>The Hodge star is a function of signature</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cstar_p+%3A+%5Cbigwedge%5Ep%28V%29+%5Cto+%5Cbigwedge%5E%7Bn-p%7D%28V%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\star_p : \bigwedge^p(V) \to \bigwedge^{n-p}(V)\\"> that is clearly also a linear isomorphism, which means that</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5Ep%28V%29+%5Csimeq+%5Cbigwedge%5E%7Bn-p%7D%28V%29.+%5Cqquad+%286%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\bigwedge^p(V) \simeq \bigwedge^{n-p}(V). \qquad (6)\\"> We also showed via the above calculation that wedge product is a bilinear function of signature</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cwedge+%3A+%5Cbigwedge%5Ep%28V%29+%5Ctimes+%5Cbigwedge%5E%7Bn-p%7D%28V%29+%5Cto+%5Cbigwedge%5E%7Bn%7D%28V%29.%5C%5C+" alt="[公式]" eeimg="1" data-formula="\wedge : \bigwedge^p(V) \times \bigwedge^{n-p}(V) \to \bigwedge^{n}(V).\\ "> </p> <p>We denote the volume corresponding to the wedge product of our <img src="https://www.zhihu.com/equation?tex=n" alt="[公式]" eeimg="1" data-formula="n"> basis vectors of real vector space <img src="https://www.zhihu.com/equation?tex=V" alt="[公式]" eeimg="1" data-formula="V"> in an order of positive orientation, <img src="https://www.zhihu.com/equation?tex=dx%5E1%5Cwedge+dx%5E2%5Cwedge+%5Cldots+%5Cwedge+dx%5En" alt="[公式]" eeimg="1" data-formula="dx^1\wedge dx^2\wedge \ldots \wedge dx^n"> , as <img src="https://www.zhihu.com/equation?tex=%5Cmathrm%7BVol%7D_%5Cmu" alt="[公式]" eeimg="1" data-formula="\mathrm{Vol}_\mu"> and observe that every elements of <img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5E%7Bn%7D%28V%29" alt="[公式]" eeimg="1" data-formula="\bigwedge^{n}(V)"> is of the form <img src="https://www.zhihu.com/equation?tex=c%5Ccdot+%5Cmathrm%7BVol%7D_%5Cmu" alt="[公式]" eeimg="1" data-formula="c\cdot \mathrm{Vol}_\mu"> , <img src="https://www.zhihu.com/equation?tex=c+%5Cin+%5Cmathbb%7BR%7D" alt="[公式]" eeimg="1" data-formula="c \in \mathbb{R}"> , or</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5E%7Bn%7D%28V%29+%5Csimeq+%5Cmathbb%7BR%7D%5Cmathrm%7BVol%7D_%5Cmu+%5Csimeq+%5Cmathbb%7BR%7D.+%5Cqquad+%287%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\bigwedge^{n}(V) \simeq \mathbb{R}\mathrm{Vol}_\mu \simeq \mathbb{R}. \qquad (7)\\"> Moreover, <img src="https://www.zhihu.com/equation?tex=%282%29" alt="[公式]" eeimg="1" data-formula="(2)"> tells us that plugging in a <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> -form on the left results in a function of signature</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5E%7Bn-p%7D%28V%29+%5Cto+%5Cleft%28%5Cbigwedge%5E%7Bn%7D%28V%29+%5Csimeq+%5Cmathbb%7BR%7D%5Cright%29%2C%5C%5C+" alt="[公式]" eeimg="1" data-formula="\bigwedge^{n-p}(V) \to \left(\bigwedge^{n}(V) \simeq \mathbb{R}\right),\\ "> which is a functional over the <img src="https://www.zhihu.com/equation?tex=%28n-p%29" alt="[公式]" eeimg="1" data-formula="(n-p)"> -forms, which we denote with <img src="https://www.zhihu.com/equation?tex=%5Cleft%28%5Cbigwedge%5E%7Bn-p%7D%28V%29%5Cright%29%5E%5Cvee" alt="[公式]" eeimg="1" data-formula="\left(\bigwedge^{n-p}(V)\right)^\vee"> , and no different different <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> -form inputs result in the same functional, which means we have induced an injective function of signature</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5E%7Bp%7D%28V%29+%5Cto+%5Cleft%28%5Cbigwedge%5E%7Bn-p%7D%28V%29%5Cright%29%5E%5Cvee.%5C%5C" alt="[公式]" eeimg="1" data-formula="\bigwedge^{p}(V) \to \left(\bigwedge^{n-p}(V)\right)^\vee.\\"> We now prove that it is also surjective. Every element in <img src="https://www.zhihu.com/equation?tex=%5Cleft%28%5Cbigwedge%5E%7Bn-p%7D%28V%29%5Cright%29%5E%5Cvee" alt="[公式]" eeimg="1" data-formula="\left(\bigwedge^{n-p}(V)\right)^\vee"> is, by definition of the vector space underlying the functional, uniquely defined by a collection of <img src="https://www.zhihu.com/equation?tex=%5Cbinom%7Bn%7D%7Bn-p%7D" alt="[公式]" eeimg="1" data-formula="\binom{n}{n-p}"> mappings of combinations to real numbers, or in other words, each<img src="https://www.zhihu.com/equation?tex=dx%5E%7B%5Cnu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cnu_%7Bn-p%7D%7D" alt="[公式]" eeimg="1" data-formula="dx^{\nu_1}\wedge \ldots \wedge dx^{\nu_{n-p}}"> in our basis is assigned to a real number <img src="https://www.zhihu.com/equation?tex=C%5E%7B%5Cnu_1%5Cldots+%5Cnu_%7Bn-p%7D%7D" alt="[公式]" eeimg="1" data-formula="C^{\nu_1\ldots \nu_{n-p}}"> . This corresponds uniquely to <img src="https://www.zhihu.com/equation?tex=e%5E%7B%5Cmu_1%5Cldots+%5Cmu_p%5Cnu_1%5Cldots+%5Cnu_%7Bn-p%7D%7DC%5E%7B%5Cnu_1%5Cldots+%5Cnu_%7Bn-p%7D%7D+dx%5E%7B%5Cmu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D+%5Cin+%5Cbigwedge%5Ep%28V%29" alt="[公式]" eeimg="1" data-formula="e^{\mu_1\ldots \mu_p\nu_1\ldots \nu_{n-p}}C^{\nu_1\ldots \nu_{n-p}} dx^{\mu_1}\wedge \ldots \wedge dx^{\mu_p} \in \bigwedge^p(V)"> in our wedge product.</p> <p>Bijectivity means</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5E%7Bp%7D%28V%29+%5Csimeq+%5Cleft%28%5Cbigwedge%5E%7Bn-p%7D%28V%29%5Cright%29%5E%5Cvee.+%5Cqquad+%288%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\bigwedge^{p}(V) \simeq \left(\bigwedge^{n-p}(V)\right)^\vee. \qquad (8)\\"> </p> <h3>Inducing an inner product on <img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5Ep%28V%29" alt="[公式]" eeimg="1" data-formula="\bigwedge^p(V)"> via the Hodge star</h3> <p>We now examine the function described by</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbegin%7Balign%7D+%5Clangle%5Ccdot+%2C%5Ccdot+%5Crangle+%5Cbigwedge%5Ep%28V%29+%5Ctimes+%5Cbigwedge%5Ep%28V%29+%5Cto+%5Cmathbb%7BR%7D%2C%5C%5C+%5C%5C+%5Clangle+%5Comega%2C+%5Ceta+%5Crangle+%3D+%5Comega+%5Cwedge+%28%5Cstar_p+%5Ceta%29%2C%5C%5C%5C%5C++dx%5E1%5Cwedge+dx%5E2%5Cwedge+%5Cldots+%5Cwedge+dx%5En+%5Csim+%5Cmathrm%7BVol%7D_%5Cmu.+%5Cend%7Balign%7D%5Cqquad+%289%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\begin{align} \langle\cdot ,\cdot \rangle \bigwedge^p(V) \times \bigwedge^p(V) \to \mathbb{R},\\ \\ \langle \omega, \eta \rangle = \omega \wedge (\star_p \eta),\\\\ dx^1\wedge dx^2\wedge \ldots \wedge dx^n \sim \mathrm{Vol}_\mu. \end{align}\qquad (9)\\">We now verify that it satisfies the properties of an inner product. Below, we per <img src="https://www.zhihu.com/equation?tex=%283%29" alt="[公式]" eeimg="1" data-formula="(3)"> set</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbegin%7Beqnarray%7D+%5Comega+%26%3D%26+%5Cfrac%7B1%7D%7Bp%21%28n-p%29%21%7DA_%7B%5Csigma_1%5Cldots+%5Csigma_p%7Ddx%5E%7B%5Csigma_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_p%7D%5C%5C+%5Ceta+%26%3D%26+%5Cfrac%7B1%7D%7Bp%21%28n-p%29%21%7DB_%7B%5Csigma_1%5Cldots+%5Csigma_p%7Ddx%5E%7B%5Csigma_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_p%7D%5C%5C+%5Cend%7Beqnarray%7D+%5Cqquad+%2810%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\begin{eqnarray} \omega &amp;=&amp; \frac{1}{p!(n-p)!}A_{\sigma_1\ldots \sigma_p}dx^{\sigma_1}\wedge \ldots \wedge dx^{\sigma_p}\\ \eta &amp;=&amp; \frac{1}{p!(n-p)!}B_{\sigma_1\ldots \sigma_p}dx^{\sigma_1}\wedge \ldots \wedge dx^{\sigma_p}\\ \end{eqnarray} \qquad (10)\\"> </p> <p>and given this, by <img src="https://www.zhihu.com/equation?tex=%285%29" alt="[公式]" eeimg="1" data-formula="(5)"> ,</p> <p><img src="https://www.zhihu.com/equation?tex=%5Cbegin%7Beqnarray%7D+%5Cstar_p%5Comega+%26%3D%26+%5Cfrac%7B1%7D%7Bp%21%28n-p%29%21%7DA_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D+e%5E%7B%5Csigma_1%5Csigma_2%5Cldots+%5Csigma_n%7Ddx%5E%7B%5Csigma_%7Bp%2B1%7D%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_n%7D%5C%5C+%5Cstar_p%5Ceta+%26%3D%26+%5Cfrac%7B1%7D%7Bp%21%28n-p%29%21%7DB_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D+e%5E%7B%5Csigma_1%5Csigma_2%5Cldots+%5Csigma_n%7Ddx%5E%7B%5Csigma_%7Bp%2B1%7D%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_n%7D.%5C%5C+%5Cend%7Beqnarray%7D+%5Cqquad+%2811%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\begin{eqnarray} \star_p\omega &amp;=&amp; \frac{1}{p!(n-p)!}A_{\sigma_1\ldots \sigma_p} e^{\sigma_1\sigma_2\ldots \sigma_n}dx^{\sigma_{p+1}}\wedge \ldots \wedge dx^{\sigma_n}\\ \star_p\eta &amp;=&amp; \frac{1}{p!(n-p)!}B_{\sigma_1\ldots \sigma_p} e^{\sigma_1\sigma_2\ldots \sigma_n}dx^{\sigma_{p+1}}\wedge \ldots \wedge dx^{\sigma_n}.\\ \end{eqnarray} \qquad (11)\\"> We will for simplicity also omit the constant factor in subsequent calculations.</p> <ol> <li>Linearity in the first argument is satisfied because the wedge product is bilinear.</li> <li>The calculation below gives conjugate symmetry.</li> </ol> <p><img src="https://www.zhihu.com/equation?tex=%5Cbegin%7Beqnarray%7D+%5Clangle+%5Comega%2C+%5Ceta+%5Crangle+%26%3D%26+%5Comega+%5Cwedge+%28%5Cstar_p+%5Ceta%29%5C%5C+%26%3D%26%28A_%7B%5Csigma_1%5Cldots+%5Csigma_p%7Ddx%5E%7B%5Csigma_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_p%7D%29%5Cwedge+%28B_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D+e%5E%7B%5Csigma_1%5Csigma_2%5Cldots+%5Csigma_n%7Ddx%5E%7B%5Csigma_%7Bp%2B1%7D%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_n%7D%29%5C%5C+%26%3D%26+A_%7B%5Csigma_1%5Cldots+%5Csigma_p%7DB_%7B%5Csigma_1%5Cldots+%5Csigma_p%7De%5E%7B%5Csigma_1%5Csigma_2%5Cldots+%5Csigma_n%7Ddx%5E%7B%5Csigma_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_p%7D%5Cwedge+dx%5E%7B%5Csigma_%7Bp%2B1%7D%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_n%7D%5C%5C+%26%3D%26A_%7B%5Csigma_1%5Cldots+%5Csigma_p%7DB_%7B%5Csigma_1%5Cldots+%5Csigma_p%7Ddx%5E1%5Cwedge+dx%5E2%5Cldots+%5Cwedge+dx%5En%5C%5C+%26%3D%26%28B_%7B%5Csigma_1%5Cldots+%5Csigma_p%7Ddx%5E%7B%5Csigma_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_p%7D%29%5Cwedge+%28A_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D+e%5E%7B%5Csigma_1%5Csigma_2%5Cldots+%5Csigma_n%7Ddx%5E%7B%5Csigma_%7Bp%2B1%7D%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Csigma_n%7D%29%5C%5C+%26%3D%26%5Ceta+%5Cwedge+%28%5Cstar_p+%5Comega%29%5C%5C+%26%3D%26%5Clangle+%5Ceta%2C+%5Comega+%5Crangle.+%5Cend%7Beqnarray%7D%5Cqquad+%2812%29%5C%5C+" alt="[公式]" eeimg="1" data-formula="\begin{eqnarray} \langle \omega, \eta \rangle &amp;=&amp; \omega \wedge (\star_p \eta)\\ &amp;=&amp;(A_{\sigma_1\ldots \sigma_p}dx^{\sigma_1}\wedge \ldots \wedge dx^{\sigma_p})\wedge (B_{\sigma_1\ldots \sigma_p} e^{\sigma_1\sigma_2\ldots \sigma_n}dx^{\sigma_{p+1}}\wedge \ldots \wedge dx^{\sigma_n})\\ &amp;=&amp; A_{\sigma_1\ldots \sigma_p}B_{\sigma_1\ldots \sigma_p}e^{\sigma_1\sigma_2\ldots \sigma_n}dx^{\sigma_1}\wedge \ldots \wedge dx^{\sigma_p}\wedge dx^{\sigma_{p+1}}\wedge \ldots \wedge dx^{\sigma_n}\\ &amp;=&amp;A_{\sigma_1\ldots \sigma_p}B_{\sigma_1\ldots \sigma_p}dx^1\wedge dx^2\ldots \wedge dx^n\\ &amp;=&amp;(B_{\sigma_1\ldots \sigma_p}dx^{\sigma_1}\wedge \ldots \wedge dx^{\sigma_p})\wedge (A_{\sigma_1\ldots \sigma_p} e^{\sigma_1\sigma_2\ldots \sigma_n}dx^{\sigma_{p+1}}\wedge \ldots \wedge dx^{\sigma_n})\\ &amp;=&amp;\eta \wedge (\star_p \omega)\\ &amp;=&amp;\langle \eta, \omega \rangle. \end{eqnarray}\qquad (12)\\ "> 3. If in <img src="https://www.zhihu.com/equation?tex=%2812%29" alt="[公式]" eeimg="1" data-formula="(12)"> , we set <img src="https://www.zhihu.com/equation?tex=A_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D+%3D+B_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D" alt="[公式]" eeimg="1" data-formula="A_{\sigma_1\ldots \sigma_p} = B_{\sigma_1\ldots \sigma_p}"> in order to equate <img src="https://www.zhihu.com/equation?tex=%5Comega+%3D+%5Ceta" alt="[公式]" eeimg="1" data-formula="\omega = \eta"> , we find that</p> <p><img src="https://www.zhihu.com/equation?tex=%5Clangle%5Comega%2C+%5Comega%5Crangle+%3D+A_%7B%5Csigma_1%5Cldots+%5Csigma_p%7DA_%7B%5Csigma_1%5Cldots+%5Csigma_p%7D%5Cmathrm%7BVol%7D_%5Cmu+%3E+0%2C%5C%5C" alt="[公式]" eeimg="1" data-formula="\langle\omega, \omega\rangle = A_{\sigma_1\ldots \sigma_p}A_{\sigma_1\ldots \sigma_p}\mathrm{Vol}_\mu > 0,\\&#8221;> being the product of a positive volume and a sum of squares holds iff only <img src="https://www.zhihu.com/equation?tex=%5Comega+%5Cneq+0" alt="[公式]" eeimg="1" data-formula="\omega \neq 0"> , which shows positive definiteness.</p> <p>We note how</p> <p><img src="https://www.zhihu.com/equation?tex=%5Clangle+dx%5E%7B%5Cmu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D%2C+dx%5E%7B%5Cnu_1%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cnu_p%7D+%5Crangle+%3D+%5Cpm+dx%5E1%5Cwedge+dx%5E2%5Cldots+%5Cwedge+dx%5En+%5C%5C" alt="[公式]" eeimg="1" data-formula="\langle dx^{\mu_1}\wedge \ldots \wedge dx^{\mu_p}, dx^{\nu_1}\wedge \ldots \wedge dx^{\nu_p} \rangle = \pm dx^1\wedge dx^2\ldots \wedge dx^n \\"> if and only if <img src="https://www.zhihu.com/equation?tex=%5C%7B%5Cmu_1%2C%5Cmu_2%5Cldots%2C+%5Cmu_p%5C%7D+%3D+%5C%7B%5Cnu_1%2C%5Cnu_2%5Cldots%2C+%5Cnu_p%5C%7D" alt="[公式]" eeimg="1" data-formula="\{\mu_1,\mu_2\ldots, \mu_p\} = \{\nu_1,\nu_2\ldots, \nu_p\}"> and that if such is not satisfied, the inner product is necessarily <img src="https://www.zhihu.com/equation?tex=0" alt="[公式]" eeimg="1" data-formula="0"> . Thus this inner product evaluates to <img src="https://www.zhihu.com/equation?tex=%5Cmathrm%7BVol%7D_%5Cmu" alt="[公式]" eeimg="1" data-formula="\mathrm{Vol}_\mu"> whenever both its inputs are the same basis vector. There is of course an inner product defined on the vector space spanned by <img src="https://www.zhihu.com/equation?tex=%5C%7Bdx%5E%5Cmu%5C%7D" alt="[公式]" eeimg="1" data-formula="\{dx^\mu\}"> , which is the inner product defined above for the case <img src="https://www.zhihu.com/equation?tex=p%3D1" alt="[公式]" eeimg="1" data-formula="p=1"> on<img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5E1%28V%29" alt="[公式]" eeimg="1" data-formula="\bigwedge^1(V)"> . We can use this to induce an inner product expressed in terms of the determinant for arbitrary <img src="https://www.zhihu.com/equation?tex=p" alt="[公式]" eeimg="1" data-formula="p"> . Treating <img src="https://www.zhihu.com/equation?tex=%5Cmathrm%7BVol%7D_%5Cmu" alt="[公式]" eeimg="1" data-formula="\mathrm{Vol}_\mu"> as a pre-set value representing an <img src="https://www.zhihu.com/equation?tex=n" alt="[公式]" eeimg="1" data-formula="n"> -dimensional volume corresponding to <img src="https://www.zhihu.com/equation?tex=n" alt="[公式]" eeimg="1" data-formula="n"> differentials. We can modify the inner product on <img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5E1%28V%29" alt="[公式]" eeimg="1" data-formula="\bigwedge^1(V)"> by changing to <img src="https://www.zhihu.com/equation?tex=dx%5E1%5Cwedge+dx%5E2%5Cwedge+%5Cldots+%5Cwedge+dx%5En+%5Csim+%28%5Cmathrm%7BVol%7D_%5Cmu%29%5E%7B1%2Fp%7D" alt="[公式]" eeimg="1" data-formula="dx^1\wedge dx^2\wedge \ldots \wedge dx^n \sim (\mathrm{Vol}_\mu)^{1/p}"> in that inner product, which we denote as <img src="https://www.zhihu.com/equation?tex=%5Clangle+%5Ccdot+%2C+%5Ccdot+%5Crangle_1" alt="[公式]" eeimg="1" data-formula="\langle \cdot , \cdot \rangle_1"> . Then, noting that the determinant of a diagonal matrix is the product of the diagonal entries, it is easy to observe that</p> <p><img src="https://www.zhihu.com/equation?tex=%5Clangle+dx%5E%7B%5Cmu_1%7D%5Cwedge+dx%5E%7B%5Cmu_2%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D%2C+dx%5E%7B%5Cnu_1%7D%5Cwedge+dx%5E%7B%5Cnu_2%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cnu_p%7D%5Crangle+%3D+%5Cdet+%28%5Clangle+dx%5E%7B%5Cmu_i%7D%2C++dx%5E%7B%5Cnu_j%7D%5Crangle_1%29%2C+%5Cqquad+%2813%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\langle dx^{\mu_1}\wedge dx^{\mu_2}\wedge \ldots \wedge dx^{\mu_p}, dx^{\nu_1}\wedge dx^{\nu_2}\wedge \ldots \wedge dx^{\nu_p}\rangle = \det (\langle dx^{\mu_i}, dx^{\nu_j}\rangle_1), \qquad (13)\\"> with <img src="https://www.zhihu.com/equation?tex=i%2Cj" alt="[公式]" eeimg="1" data-formula="i,j"> as the row and column indices of a <img src="https://www.zhihu.com/equation?tex=p%5Ctimes+p" alt="[公式]" eeimg="1" data-formula="p\times p"> matrix the elements of which are inner products. The determinant in <img src="https://www.zhihu.com/equation?tex=%2810%29" alt="[公式]" eeimg="1" data-formula="(10)"> is called the <i>Gram determinant</i> or <i>Gramian</i>. In this case <img src="https://www.zhihu.com/equation?tex=%5Clangle+dx%5Ei%2C+dx%5Ei+%5Crangle+%3D+%28%5Cmathrm%7BVol%7D_%5Cmu%29%5E%7B1%2Fp%7D" alt="[公式]" eeimg="1" data-formula="\langle dx^i, dx^i \rangle = (\mathrm{Vol}_\mu)^{1/p}"> for all <img src="https://www.zhihu.com/equation?tex=i" alt="[公式]" eeimg="1" data-formula="i"> , which results in</p> <p><img src="https://www.zhihu.com/equation?tex=%5Clangle+dx%5E%7B%5Cmu_1%7D%5Cwedge+dx%5E%7B%5Cmu_2%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D%2C+dx%5E%7B%5Cmu_1%7D%5Cwedge+dx%5E%7B%5Cmu_2%7D%5Cwedge+%5Cldots+%5Cwedge+dx%5E%7B%5Cmu_p%7D%5Crangle+%3D+%5Cmathrm%7BVol%7D_%5Cmu%2C+%5Cqquad+%2814%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\langle dx^{\mu_1}\wedge dx^{\mu_2}\wedge \ldots \wedge dx^{\mu_p}, dx^{\mu_1}\wedge dx^{\mu_2}\wedge \ldots \wedge dx^{\mu_p}\rangle = \mathrm{Vol}_\mu, \qquad (14)\\"> which is consistent with <img src="https://www.zhihu.com/equation?tex=%2812%29" alt="[公式]" eeimg="1" data-formula="(12)"> . This inner product applied to pairs of basis vectors yield <img src="https://www.zhihu.com/equation?tex=0" alt="[公式]" eeimg="1" data-formula="0"> , when the two inputs are not the same. Linearity naturally extends this inner product to arbitrary vectors in <img src="https://www.zhihu.com/equation?tex=%5Cbigwedge%5Ep%28V%29" alt="[公式]" eeimg="1" data-formula="\bigwedge^p(V)"> . We will leave to the reader to check that <img src="https://www.zhihu.com/equation?tex=%2813%29" alt="[公式]" eeimg="1" data-formula="(13)"> is well-defined, that is, for <img src="https://www.zhihu.com/equation?tex=%5C%7Bu_1%2Cu_2%2C%5Cldots%2C+u_p%2C+v_1%2C+v_2%2C%5Cldots+v_p%5C%7D+%5Csubset+%5Cbigwedge%5E1%28V%29" alt="[公式]" eeimg="1" data-formula="\{u_1,u_2,\ldots, u_p, v_1, v_2,\ldots v_p\} \subset \bigwedge^1(V)"> ,</p> <p><img src="https://www.zhihu.com/equation?tex=%5Clangle+u_1%5Cwedge+u_2%5Cwedge+%5Cldots+%5Cwedge+u_p%2C+v_1%5Cwedge+v_2%5Cwedge+%5Cldots+%5Cwedge+v_p%5Crangle+%3D+%5Cdet+%28%5Clangle+u_i%2C++v_j%5Crangle_1%29.+%5Cqquad+%2815%29%5C%5C" alt="[公式]" eeimg="1" data-formula="\langle u_1\wedge u_2\wedge \ldots \wedge u_p, v_1\wedge v_2\wedge \ldots \wedge v_p\rangle = \det (\langle u_i, v_j\rangle_1). \qquad (15)\\"> </p> <hr> <p>The above was written after reading section 6 on four-vectors in [2] and then <a href="https://link.zhihu.com/?target=http%3A//math.stanford.edu/~conrad/diffgeomPage/handouts/star.pdf" class=" wrap external" target="_blank" rel="noreferrer noopener">[1]</a>. [2] gave an explicit formula for the Hodge dual in the case of two forms in 4 dimensions without explicitly mentioned &#8220;Hodge&#8221; using completely antisymmetric tensor (or pseudotensor) of rank 4. I wrote about this pseudotensor at <a href="https://zhuanlan.zhihu.com/p/361583379" class="internal" rel="noreferrer">[3]</a>. As for Brian Conrad&#8217;s notes, they did not present an explicit formula for Hodge dual though in the examples section, it was noted tht computation of them is mostly a matter of being careful with signs. I do remember that one of examples was under the Minkowski inner product in which case one would need to make an appropriate adjustment for the signs. Prof Conrad first gave the inner product induced by the Gramian determinant and he proceeded to in pure mathematician formalism to define the Hodge dual as the function satisfying <img src="https://www.zhihu.com/equation?tex=%289%29" alt="[公式]" eeimg="1" data-formula="(9)"> , the well-defined-ness of which is guaranteed implicitly by the chain of isomorphisms.</p> <p>I was quite pleased that while typing this up, I did not look up any sources directly, aside from a few peeks at Prof Conrad&#8217;s notes, which were entirely meant to ensure more notational consistency, which would be more convenient if one refers to both his notes and mine. I used to believe pessimistically that differential forms and the Hodge dual might actually be somewhat beyond my level of g (general intelligence factor, or IQ). When reading about them, I could always passively follow and feel like it all makes sense, but I never was able to comfortably write or talk about them in detail independent from another text. Now, after having written this without difficulty, I am much more confident about my prospect of learning differential geometry and general relativity and my mathematical and intellectual ability in general.</p> <p><b>References</b></p> <ul> <li>[1] Professor Brian Conrad&#8217;s notes on the Hodge star operator: <a href="https://link.zhihu.com/?target=http%3A//math.stanford.edu/~conrad/diffgeomPage/handouts/star.pdf" class=" external" target="_blank" rel="noreferrer noopener"><span class="invisible">http://</span><span class="visible">math.stanford.edu/~conr</span><span class="invisible">ad/diffgeomPage/handouts/star.pdf</span><span class="ellipsis"></span></a></li> <li>[2] Landau Lifshitz classical theory of fields (I downloaded it on libgenesis)</li> <li>[3] <a href="https://zhuanlan.zhihu.com/p/361583379" class="internal" rel="noreferrer">gmachine1729:On the completely antisymmetric unit rank 4 tensor (or pseudotensor) over spacetime coordinates</a></li> </ul> </div>
Tags: uncategorized
Subscribe

  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

  • 0 comments